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In reply to the preceding Comment of Pieruschka, Safran, and Maréelja, we show that the
scattering intensity of level surfaces of Gaussian random fields has the same asymptotic behavior for
small wave vectors, both for interfaces of constant and of fluctuating thickness. In the former case,
Monte Carlo simulation results for the film correlation function in a Ginzburg-Landau model are
found to be in very good agreement with variational results; in particular, the oscillatory component
of the correlation function is found to be much more pronounced than for interfaces of fluctuating

thickness.

PACS number(s): 82.70.—y, 05.40.+j, 61.20.Gy

In their Comment [1], Pieruschka, Safran, and Mardelja argue correctly that the scattering intensity of a film of
(nearly) constant thickness e (with e sufficiently small) is given by

G () ~ Prob [[2(r)] < £|Ve(r)], |2(0)| < $|V2(0)]] |, (1)

whereas the expression

~ (8(®(r)) 6c(2(x))) » (2)

with §¢(®) = 1/e for |®| < €/2 and zero otherwise, which
we have used in Ref. [2], describes a film of fluctuating
thickness. In the limit ¢ — 0, Eq. (1) can be written as

(1]

G (r) ~ (|VE(r)| 6(3(r)) [VE(0)| 6(2(r))) , (3)
which clearly shows the additional
compared to (2).

Pieruschka and Marcelja already pointed out in Ref. [3]
that two level cuts of a three-dimensional field create a
film of nonuniform thickness, but also note that Eq. (2) is
an approximation to the correct expression, which should
be valid for not too small values of r. With the analytic
results for the asymptotic behavior of both Eq. (2) (see
Refs. [3,2]) and Eq. (3) (see the preceding Comment),
this assumption can now be checked explicitly. For films
of fluctuating thickness, one finds

flu
Gt (r) ~

“measure” factors

Gl () ~ [1 = 9()?] (4)
in the limit ¢ — 0, where g(r) = exp(—r/£)sin(kor)/

(kor). Thus, the leading spatial dependence of G ﬁfll;:::t)( r)

for large 7 is given by exp(—2r/€)[ao — a1 cos(2kor + )]/
(kor)?, where ap = a; = 1 and v = 0. The same asymp-
totic form has indeed been found in Ref. [1] for films of
constant thickness, although the constants ag, a;, and
v are different. The Fourier transform of the term pro-
portional to ap dominates the scattering intensity in the
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regime of small wave vectors k. Therefore, the low-k be-
havior in both cases is given by
kg

Ggim(k) ~ const + %arctan 5 (5)

in agreement with the results of Ref. [4]. However, the
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FIG. 1. Normalized correlation function Gf-:lf:“)(r) for

films of (mearly) constant thickness € = 0.14o. The
crosses (+) show the simulation results for level surfaces of
Gaussian random fields, the diamonds (o) for level surfaces
of a Ginzburg-Landau model (compare Ref. [2]). The simu-
lations are carried out on a simple cubic N x N x N lattice
with N = 27 and lattice constant ao = 0.5{o; averages are
taken over about 2 x 10° Monte Carlo steps per site. The
parameters of the Ginzburg-Landau model are go = —2.2 and
fo = 0.5. The parameters of the Gaussian model are obtained
by a variational minimization procedure, as described in Ref.

[2].
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film correlation function also has an oscillatory compo-
nent; if |a; /ao| is sufficiently large, these oscillations can
give rise to a peak in the scattering intensity at k ~ 2ko
[5] [which is not the case for Eq. (4)].

For films of fluctuating thickness, the data presented
in Fig. 9 of Ref. [2] are consistent with the asymptotic
behavior (5). We want to mention parenthetically that
the dependence of the correlation function (2) on € is
rather weak for € < (®2)1/2, so that (5) applies for small
€ also.

We have used a variational approach in Ref. [2] in order
to calculate the film scattering intensity for a Ginzburg-
Landau model [6,7] of microemulsion and sponge phases
[8]. For films of fluctuating thickness, it was found
that the variational results failed to reproduce a peak in
the scattering intensity, when they were compared with
Monte Carlo data for the Ginzburg-Landau model [2].
We have thus repeated our simulations for the correla-
tion function

Gl (r) ~ (IVE(r)] 6.(2(r))|VE(0)| 6.(2(r))) , (6)

of films of (nearly) constant thickness. Equation (6) is
a somewhat different approximation than Eq. (1) to de-
scribe films of finite thickness; we prefer (6) since it is

easier to handle numerically. Obviously, the expression

(3) is recovered in the limit € — 0.

The correlation function (6) is calculated in both
models by Monte Carlo simulations. The results are
shown in Fig. 1 — normalized in both cases such that
lim, 00 Gaim(r) = 1. We find that the oscillations of
the variational correlation function are much more pro-
nounced than in the case (2). The agreement of the vari-
ational approach with the full Ginzburg-Landau model is
remarkable. From this result, together with other results
presented in Ref. [2], we can draw the conclusion that in
balanced microemulsions level surfaces of Gaussian ran-
dom fields describe the geometry and structure of the am-
phiphile film in a Ginzburg-Landau model very well. On
the other hand, the rather pronounced disagreement in
the case of Eq. (2) indicates that V& at the level surface
must vary much more strongly in Gaussian random fields
than in a Ginzburg-Landau model. This is not surprising,
because the Ginzburg-Landau model contains stable in-
terfaces between an oil-rich and a water-rich phase, while
Gaussian random fields do not have any “real” interfaces.
This also explains why a peak at k ~ 2k, appeared in the
film scattering intensity of the Ginzburg-Landau model
even with expression (2), while such a peak was absent
in variational results [2]. Finally, note that in the limit of
strongly swollen microemulsion or sponge phases, where
the domain size kg ! is much larger than the interface
width, the expressions (2) and (3) become identical in a
Ginzburg-Landau theory.
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